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Variable Charge 

H. J. Ruskin 1 

Received May 6, 1993; final June 8, 1993 

In the following, we consider a sandpile cellular automaton model (height 
version), which also takes account of lattice cyclicity for variable charge of 
grains projected upon the board. The size of the "charge" or additional grains 
of sand used to upset the equilibrium and to induce an avalanche is found to 
affect the distributional forms and in particular the convergence of the estimate 
for the dynamic exponent. Exponent estimates show slow variation with lattice 
dimension L and some evidence of evolution with charge. The scaling region is 
limited in all cases with noisy decay at all levels of charge. Results presented 
extend the work of Duarte and Goncalves (1990) on the triangular lattice. 

KEY WORDS: Cellular Automata; sandpiles; height model; vortices; lattice 
cyclicity. 

1. I N T R O D U C T I O N  

Although a precise definition of self-organized criticality (SOC) still appears 
to be lacking, the principal characteristic appears to be the existence of 
scale-independent fluctuations without the fine-tuning. (2~'3) The cellular 
automaton models of Bak et  aL ~) and Wiesenfeld et  al. ~23) provide a 
means of demonstrating SOC through a transport system consisting of a 
pile of sand with the flow of grains representing the order parameter. The 
authors argued that such dynamical systems show natural stochastic time 
evolution (t large) to a unique critical state, achieved without varying the 
system control parameters and independent of the initial conditions. It was 
expected that this "self-organization" process would be characterized by 
power-law correlations in space and time. Despite the relative simplicity 
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and wide applicability of these models, there is some evidence that power 
laws are not wholly adequate to describe the observed behavior. (11'14) 

Three principal models of sandpiles currently form the basis for 
discussion in the literature, namely the critical height, critical slope, and 
Laplacian models. (14) Of these the first has attracted most attention and in 
the general height model, the SOC state has been shown to be unaffected 
by changes in the toppling rules from site to site and in any dimension, 
although some stable configurations are forbidden. (16'2) Despite the fact 
that the "slope" model does not in fact describe the slope as such but rather 
local height differences (e.g., ref. 14), it provides a more natural representa- 
tion of the dynamics of toppling than absolute heights. The attraction of 
the height model is its simple mathematical structure (2) and it has proved 
useful as a "toy model" for complex systems, despite being criticized as 
unrealistic in terms of true sandpile behavior. (15) Recent important work on 
the molecular dynamics simulation of granular flow (e.g., refs. 8, 19, 10, 
and 17 and references therein) has also failed to show a clear connection 
between these more realistic models and SOC. Nevertheless, a number of 
both isotropic and anisotropic variants of the height model have been 
proposed (see, e.g., refs. 18 and 20) and various applications of current 
importance have been studied, notably turbulence as a model for hydro- 
dynamic instability (ref. 7 and references therein) and forest fires. ~6~ 
Recently, efforts have also been made to model natural sandpile behavior 
more closely and Ding et al. ~5) have considered a stochastic slide restricted 
to a part of the sample with sand lost through the opposite side. 

In their work on turbulence, Duarte and Goncalves r describe the 
propagation of avalanches on a class of "cyclic" lattices which provide 
eddies of all sizes up to the limit of the linear dimension. Of interest also 
in terms of the formation of these eddies or vortices is the effect on the 
avalanche and cycle distributions of varying the amount of "charge" or 
quantity of sand projected onto the board. In what follows, we therefore 
describe an extension of the work for the triangular lattice over a range of 
lattice dimension L for the case of variable charge. 

2. T U R B U L E N C E  A N D  THE H E I G H T  M O D E L  

The height model on a regular lattice, as is now well known, describes 
the occupation of lattice sites by columns of sand grains which remain 
stable until a critical value h c is reached. If h c is exceeded, the excess grains 
topple and are shared equally among neighboring sites, i.e., 

h(i, j )  ~ h(i, j ) -  h c (1) 
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where h(i, j )  is the site occupation value. If the toppling and sharing 
process induces criticality in neighboring sites, then they, too, will topple 
and an avalanche is generated with average size and duration independent 
of the initial conditions. The distributions for average size s and lifetime t, 
weighted by the average response, are expected to obey 

D(s ) ,~s  1-~ ( 2 )  

D ( t )  ~ t -b" (3) 

with exponents 1 - z  and b', respectively. (13'7~ Majumdar and Dhar (12) have 
recently given revised estimates for these exponents which are slightly lower 
than those previously obtained, although still 'in reasonable agreement with 
earlier work. These authors quote ~ = 8/7 and the simple decay exponent 
b = 19/15, respectively. The first moment exponent b' remains controversial, 
with two very different values quoted by Bak et  al. (1~ and Manna. (~3) We 
shall be concerned with the estimation of these exponents and the form of 
the observed distributions as the charge is varied. 

In standard SOC models, backfiring is always possible, since any site 
which is a neighbor to one which has previously toppled may still 
redistribute excess sand to all neighbors, so that more than one avalanche 
per site can occur. The absence of this phenomenon leads to some simpli- 
fication for anisotropic models, where some exact results are known, (4) but 
the corresponding extension to the isotropic case is still lacking. Backfiring 
is also prohibited on cyclic lattices, but, unlike the fully-directed case, 
feedback information which is important in turbulent behavior is retained. 

3. RESULTS 

The geometrical configuration and conditions which we adopt are 
those described by Duarte and Goncalves, (7) but multispin coding has not 
been used. The indications are that the technique is not particularly 
efficient given the concentrated area of the avalanches and the small 
number at the transition. Consequently, the lookup table is subject to 
permanent updates, but saves on the long lattice update (e.g., ref. 9) and 
provides a real reduction in time. Triangular lattices of size 20-200 have 
been considered with charges varying between 1 and 20 for number of 
samples ranging from 105 to 10  6 . In general, we found distributions to be 
"noisy," with a comparatively short useful range where scaling behavior as 
defined in (2) and (3) above could be clearly demonstrated. Consequently, 
log-log fits refer to the truncated range in all cases, although individual 
small-scale fluctuations may be included. We found that a distribution of 
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Fig. 1. Avalanches for variable charge: Numbers  heading individual graphs indicate lattice 
dimension, number  of trials, and size of charge, respectively, Key: LDS = ln(D(s)); LI = In(s). 
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Average lifetime distribution for variable charge: Numbers heading individual graphs 
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Weighted lifetime distributions for variable charge: Numbers  heading individual 
graphs are as for Fig. 1. Key: L D T P  = ln(D(t)); LI = In(t). 
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cycle or eddy sizes was only achieved by introducing fairly large charges 
of grains to the board (in excess of 5 for most lattice sizes considered). 
Introducing a larger charge, however, was accompanied by a shift in the 
modal peak of the average lifetime distribution corresponding to that 
observed in widely used lifetime distributions such as the Weibull (22~ or its 
logarithmic counterpart, the extreme value distribution. This was particu- 
larly marked for larger lattice sizes, where effects may be assumed to give 

Table I. Height Model wi th  Cyclicity: Exponent Ranges 
under Variable Charge ~ 

Lattice Number 
dimensio 9 Charge of 

L size trials Range of b Range of ~ Range of b' 

20 1 106 -1 .105 to  - l . 319  -1.O16to -1.026 +0.484to +0.501 
20 10 106 -0.876 to - 1.433 -0.401 to -0.421 + 1.719 to +2.035 
20 20 106 ( -  5.204 to -8.546) -0.170 to -0.194 Not estimable 

30 1 106 -1 ,320 to  - l . 3 8 0  -1 .018 to  -1.035 +0.423to +0.503 
30 3 106 - 1.106 to - 1.205 -0.894 to -0.947 +0.582 to +0.669 
30 4 106 -0.719 to - 1.163 -0.764 to --0.860 +0.792 to +0.848 
30 10 106 -0.454 to - 1,309 --0.323 to -0.528 + 1.589 to + 1.704 

50 1 106 -- 1.012 to -- 1.377 - 1.025 to - 1.067 +0,497 to +0.507 
50 2 106 -0,953 to - 1.006 -0.994 to - 1.021 +0,545 to +0.560 
50 3 106 -0.864 to -0.916 -0.909 to -0.965 +0.626 to +0.648 
50 5 t06 -0,768 to - 1.117 -0.528 to -0.841 +0.762 to +0.815 
50 10 106 -0.673 to -0.888 -0.449 to -0.542 + 1.323 to + 1.851 
50 20 3 x 105 (-1 .768 to -4.148) ~ ( - 0 . 2  to -0 .6)*  +2,063 to +2.289 

80 10 106 -0,454 to -0.596 --0.574 to --0.508 + 1.269 to + 1.723 
80 20 106 (--3.630 to --5.509) ~( - -0 .2  to -0 .5)*  + 1,738 to +2,114 

150 1 6x105 - 1 . 0 3 8 t o - 1 , 1 5 7  - 1 . 0 5 8 t o - 1 . 0 8 6  +0,454to +0.470 
150 2 3 x 105 -0.964 to - 1.075 - 1,027 to - 1.045 +0.525 to +0.529 
150 4 6 x 105 -0.739 to -0.944 -0.771 to -0,899 +0.699 to +0.792 
150 5 106 -0.715 to -0.885 -0.550 to -0,860 +0.725 to +0.970 
150 10 3 x 10 s -0.392 to -0.716 --0.498 to --0.606 +0.884 to + 1.736 
150 20 3 x 105 --0.477 to --0.690 -0,139 to -0.207* + 1.340 to +2.502 

200 1 105 -1.059 to -1.119 -1.063 to --1.093 +0.433 to +0.457 
200 5 105 -0.657 to --0.808 -0.624 to -0.780 +0.784 to + 1.038 

Estimation range is relatively unstable since, as the number of points included increases, so 
does the slope in general. In part this is due to the fluctuations noted, since these would 
normally be included until oscillations become persistent in order to achieve a reasonable 
length sequence. The value of the correlation coefficient measure is therefore limited, partly 
because of the skewness of the underlying distributions and partly due to the inherent 
autocorrelation. Asterisks indicate poor fits, noted in particular for large charge and 
"smeared" distributions (see text), and refer to especially poor correlation measures. 
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a truer representation of asymptotic behavior. Such an analogy suggests 
that modifications of the simple power-law behavior to include a shape 
parameter may well be appropriate. For very large charge, the modal peak 
is effectively flattened or smeared over a considerable range of ln( (s ) )  or 
ln(( t ) ) ,  respectively, and typical avalanche behavior is both shifted and 
reduced. We note again that distributions are noisy with fluctuations 
appearing at relatively low values of ( s )  and ( t ) .  We illustrate for lattice 
size 150 and various levels of charge in Figs. 1-3. 

In Table I, we summarize results obtained on log-log least squares 
fits over the scaling region for various lattice sizes and levels of charge. 
Our results for the dynamic exponent b show slow variation with L and 
some evidence of evolution with charge. We note similar behavior with 
respect to the static exponent ~, so that as charge increases, both exponents 
decrease, although not smoothly and with large uncertainties. The dynamic 
exponent here is the decay exponent and for charge 1 in particular seems 
to be in very reasonable agreement with the value obtained by Duarte and 
Goncalves (7) and Majumdar and Dhar. (12) Our ~ value for charge t would 
appear to be slightly lower than that quoted by these authors for smaller 
lattice dimensions, but taking all L into account, a value of z = 8/7 seems 
quite plausible. For the other dynamic exponent, as defined in Eq. (2), our 
results for charge 1 appear to be much closer to the value quoted by Bak 

Table U. Cycle Distributions: Average Eddy Size 
under Variable Charge ~ 

Lattice 
Dimension 

L Charge Average eddy size 

20 1 ,2 ,4  0 
10 0.499 
20 3.160 

30 1 ,3 ,4  0 
10 0.548 

50 1 , 2 , 3 , 5  0 
10 0.584 
20 4.039 

80 10 0.604 
20 4.261 

150 1 , 2 , 4 , 5  0 
10 0.619 
20 4.451 

a Results from fitting a form A + B e  x, with c =charge,  
indicate x ~ -1 .0 .  
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et aL (1~ than  to tha t  o f  Manna ,  (13) but  are again  dependen t  on charge and  
as this increases, the exponen t  a t ta ins  values no t  i ncompa t ib l e  with tha t  
quo ted  by M a n n a  and even higher.  These values should  be in te rpre ted  
caut iously ,  however ,  since es t imate  ranges are  unstable.  I t  is no t iceable  
once again  that  va r ia t ion  with L appea r s  to be small. 

Average  eddy  or  cycle size is examined  in Table  II  and  shows slow 
evolu t ion  with L, but  a large push  appea r s  to be necessary before any 
sp read  of  eddy  sizes is achieved.  I t  seems clearly ind ica ted  tha t  this average 
varies also with level of  charge  as expected,  with p re l iminary  fits ind ica t ing  
an exponen t  x ,-~ - 1 . 0 .  
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